For a reversible adiabatic process, the system is moving between two different isotherms, so the temperature is changing. Also, the both volume and pressure are changing. So P_1V_1T_1 \rightarrow P_2V_2T_2.
The work done in an adiabatic process is less than that of an isothermal process, as an isothermal process is the maximum work possible to be done on the system. w_{adiabatic} < w_{isothermal}
For a reversible adiabatic process, there is no heat transfer to the system by definition, thus q=0. Since \Delta{U}=q+w, then \Delta{U}=w=-PdV.
For the following derivation, to make our lives a bit easier, we are going to consider the case where n=1.
dU=-PdV
C_vdT=-PdV
C_vdT+PdV=0
C_vdT+RTdV/V=0
\text{as } P=RT/V
\text{divide equation by } T
C_vdT/T+RT/TdV/V=0/T
C_vdT/T+RdV/V=0
C_v\int_{T_1}^{T_2}dT/T+R\int_{V_1}^{V_2}dV/V=0
C_vln(T_2/T_1)+Rln(V_2/V_1)=0
\text{recall that }R=C_p-C_v
\text{divide by }C_v
C_v/C_vln(T_2/T_1)+(C_p-C_v)/C_vln(V_2/V_1)=0
ln(T_2/T_1)+(C_p/C_v+1)ln(V_2/V_1)=0
\text{let } C_p/C_v =\gamma
ln(T_2/T_1)+ln(V_2/V_1)^{\gamma-1}=0
ln(T_2/T_1)=ln(V_1/V_2)^{\gamma-1}
T_2/T_1=(V_1/V_2)^{\gamma-1}
\text{since } PV=RT
(P_2V_2)/(P_1V_1)=(V_1/V_2)^{\gamma-1}
P_2/P_1=(V_1/V_2)^{\gamma-1}(V_1/V_2)
P_2/P_1=(V_1/V_2)^{\gamma}
P_1V_1^{\gamma}=P_2V_2^{\gamma} \text{ where } \gamma = C_p/C_v
To check our work, we can see if this applies to the ideal gas law.
P_1V_1^{\gamma}=P_2V_2^{\gamma}
PV^{\gamma}=RTV^{\gamma}/V
PV^{\gamma}=RTV^{\gamma-1}
PV^{\gamma}/V^{\gamma}=RTV^{\gamma-1}/V^{\gamma}
P=RT/V
The gamma term can also be related to the number of degrees of freedom,f, in a gas.
\gamma = C_p/C_v = \Delta{H}/\Delta{U}=(f+2)R/fR= (f+2)/f
To check out \Delta{H}, the entropy, we consider
\Delta{H}=\Delta{U}+\Delta{PV}=w+q+\Delta{PV}=w+R\Delta{T}
\Delta{H}=C_v\Delta{T}+R\Delta{T}
\Delta{H}=(C_v+R)\Delta{T}
\Delta{H}=C_p\Delta{T}
In summary:
q=0
\Delta{U}=w=-PdV
\Delta{H}=C_p\Delta{T}
P_1V_1^{\gamma}=P_2V_2^{\gamma} \text{ where } \gamma = C_p/C_v
No comments:
Post a Comment