Processing math: 100%

Sunday, 18 November 2012

Ideal Gases: Reversible Adiabatic Process

For a reversible adiabatic process, the system is moving between two different isotherms, so the temperature is changing. Also, the both volume and pressure are changing. So P_1V_1T_1 \rightarrow P_2V_2T_2.

The work done in an adiabatic process is less than that of an isothermal process, as an isothermal process is the maximum work possible to be done on the system. w_{adiabatic} < w_{isothermal}

For a reversible adiabatic process, there is no heat transfer to the system by definition, thus q=0. Since \Delta{U}=q+w, then \Delta{U}=w=-PdV.

For the following derivation, to make our lives a bit easier, we are going to consider the case where n=1. dU=-PdV C_vdT=-PdV C_vdT+PdV=0 C_vdT+RTdV/V=0 \text{as } P=RT/V \text{divide equation by } T C_vdT/T+RT/TdV/V=0/T C_vdT/T+RdV/V=0 C_v\int_{T_1}^{T_2}dT/T+R\int_{V_1}^{V_2}dV/V=0 C_vln(T_2/T_1)+Rln(V_2/V_1)=0 \text{recall that }R=C_p-C_v \text{divide by }C_v C_v/C_vln(T_2/T_1)+(C_p-C_v)/C_vln(V_2/V_1)=0 ln(T_2/T_1)+(C_p/C_v+1)ln(V_2/V_1)=0 \text{let } C_p/C_v =\gamma ln(T_2/T_1)+ln(V_2/V_1)^{\gamma-1}=0 ln(T_2/T_1)=ln(V_1/V_2)^{\gamma-1} T_2/T_1=(V_1/V_2)^{\gamma-1} \text{since } PV=RT (P_2V_2)/(P_1V_1)=(V_1/V_2)^{\gamma-1} P_2/P_1=(V_1/V_2)^{\gamma-1}(V_1/V_2) P_2/P_1=(V_1/V_2)^{\gamma} P_1V_1^{\gamma}=P_2V_2^{\gamma} \text{ where } \gamma = C_p/C_v 

To check our work, we can see if this applies to the ideal gas law. P_1V_1^{\gamma}=P_2V_2^{\gamma} PV^{\gamma}=RTV^{\gamma}/V PV^{\gamma}=RTV^{\gamma-1} PV^{\gamma}/V^{\gamma}=RTV^{\gamma-1}/V^{\gamma} P=RT/V The gamma term can also be related to the number of degrees of freedom,f, in a gas. \gamma = C_p/C_v = \Delta{H}/\Delta{U}=(f+2)R/fR= (f+2)/f

To check out \Delta{H}, the entropy, we consider \Delta{H}=\Delta{U}+\Delta{PV}=w+q+\Delta{PV}=w+R\Delta{T} \Delta{H}=C_v\Delta{T}+R\Delta{T} \Delta{H}=(C_v+R)\Delta{T} \Delta{H}=C_p\Delta{T}

In summary:
q=0 \Delta{U}=w=-PdV \Delta{H}=C_p\Delta{T} P_1V_1^{\gamma}=P_2V_2^{\gamma} \text{ where } \gamma = C_p/C_v

No comments:

Post a Comment